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Specific heat of multifractal energy spectra
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Motivated by the self-similar character of energy spectra demonstrated for quasicrystals, we investigate the
case of multifractal energy spectra, and compute the specific heat associated with simple archetypal forms of
multifractal sets as generated by iterated maps. We considered the logistic map and the circle map at their
threshold to chaos. Both examples show nontrivial structures associated with the scaling properties of their
respective chaotic attractors. The specific heat displays generically log-periodic oscillations around a value that
characterizes a single exponent, the “fractal dimension,” of the distribution of energy levels close to the
minimum value set to 0. It is shown that when the fractal dimension and the frequency of log oscillations of
the density of states are large, the amplitude of the resulting log oscillation in the specific heat becomes much
smaller than the log-periodic oscillation measured on the density of states.
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[. INTRODUCTION studied in Ref[10]. The same oscillations could be directly
identified as the longest wavelength oscillations on the inte-
In recent years there has been an increasing interest grated density of states when it is expressed in terms of the
quasicrystals. These peculiar structures have been studied dggarithm of the energy. We will see that most of the con-
tensively both experimentallyl] and theoreticallyf2]. Sev-  clusions reached on the Cantor sets are still applicable to this
eral reviews on the subject are availaf¢ One fascinating more complicated class of energy spectra. Let us also note
observation concerns the scaling property of some physicdhat such oscillating specific heat has been obtained in an
properties observed on those systems. In particular, excit@periodic Ising modef11]. Moreover, recently Curado and
tions or quasiparticle states exhibit self-similar speptjaln ~ Rego-Monteird 12] derived similar multifractal spectra such
order to better understand the thermodynamics of such ol&s the ones we will study below directly from a Hamiltonian,
jects, model cases have been studi®dg]. In particular in  and not as postulated spectrum as we do here.
Refs.[6—8] the specific heaC(T) has been computed for In the present study, after defining our identification of the
fractally distributed energy spectra. The present contributiorgnergy spectrum, we present the result of direct numerical
follows similar lines, through the investigation of more gen-simulations, concerning the cumulative density of states and
eral energy spectra, namely, multifractal oi% For this  the specific heat. We give a closed form expression for the
purpose, we consider a few strange attractors of iteratedmplitude of the log oscillations that are expected in the
maps at the onset of chaos that have been studied in detail #pecific heat, and we show that when the frequency is high
the past and map the attractor on the energy leeglsn  (typically larger than unity in the natural scale of the prob-
=12, .... lem) the amplitude of the oscillations is rapidly decaying due
The main conclusion of the initial studies on the specificto intrinsic filtering that can be related to the form of the
heat is that it saturates for low temperature at a value thaoltzmann weight. Finally, we discuss the relevance of mul-
corresponds to the fractal dimension of the fractal supportifractality in the present problem.
Moreover, this saturation is “decorated” by oscillations in
In(T). Thus the period of these oscillations decrease§ as Il. ENERGY SPECTRA
vanishes. The origin of these oscillations was identified to be
due to an intrinsically discrete self-similarity of the deter- We considered two iterated maps at the onset of chaos:
ministic fractal considered as in a number of other example#he logistic and the circle maps. They follow a similar struc-
ture, namely, one computes the values of the sequence
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FIG. 2. Plot of the density of stategE) for the circle map at

FIG. 1. Plot of the density of stategE) for the logistic map at the onset of chaos.

the onset of chaos.

For reasons discussed latter, we also consider as a variant
in this case the energy level, as given by a power law of
iteratedx,,

distribution ofx on this set becomes multifractal. Péstthe
iteration can be chaotic. These features are quite general al
can be encountered in many examples, and they illustrate

one of the possible scenarios of the transition to chaos. We E =x5 (5)
specialize our discussion in the following on two such maps. neon

The iterated values of, are then identified with energy \\hereg is an arbitrary parametefiNote that in this last case,
levelsE,, after a translation and dilation so ttg{ fitinto the e minimum and maximum values ®fare 0 and 1 respec-
interval[0:1] tively.)

_ Xn—m'n{?‘i} . 7 lIl. NUMERICAL RESULTS
maxx;} —min{x;}

n
Once a large number of energy levels have been gener-

In the cases of interest for us in the following, the computa2ted(typically 1), the partition functiorZ(T) is computed
tion of the ground state energy, nfi}, is straightforward. @s a function of temperature, using the standard Boltzmann
The latter plays a central role in the analysis, since by changh€asure
ing the temperature, we will analyze the scale invariant na-
ture of the energy spectrum with respect to a dilation from Z(T)=3 e En/kT (6)
the ground state value. n

Let us now define the maps used hereafter.
where the Boltzmann constaktis set to unity, thereby de-
fining our temperature scale. We also computed the inte-

A. Logistic ma|
9 P grated density of states

The most classical example is the logistic njdg] de-

fined as
N(E)=2 H(E,~E), (7)
¢|09(X)21—AX2. ©) n
The critical value ofA is A.=1.401 155 18 Theden where H is the Heaviside functiorfequal to 1 for positive
C— . e =

arguments and O for negative oneBinally, we computed

sity of states is shown in Fig. 1. the specific heat as

B. Circle map 20— E, /KT —Epn /KT ’
. . . 2 Ene 2 E,e 0
The second case is the circle mg8], defined by the 1 n n
following iteration function C(N=|7z zm Z(T)
sin(27Xx) (8)
deir(X) =A+| X— 2 (mod 1) (4) . . .
™ Figure 3 shows the log-log plot of the cumulative density of

states of the energy levels obtained from the logistic map.
where the critical value oA is A;=0.6066610634%... . The dotted line drawn in the same figure indicates that the
The density of states can be seen in Fig. 2. We observe thédrge scale trend of the density of states is to grow as a power
the support of the energy level is much denser than in théaw of the energy,
previous case, in agreement with the observation that the
fractal dimension of the support is unity. N(E)=EP, 9
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FIG. 3. Log-log plot of the integrated density of stalyE) for FIG. 4. Log-log plot of the integrated density of stal(E) for
the logistic map at the onset of chaos. The dotted curve shows the circle map at the onset of chaos. The dotted curve shows a best
best fit to the data using a single log oscillation. fit to the data using a single log oscillation.

with an exponent that can be Compared with the fractal diva|ue’ it 5|mp|y means that the number of energy levels
mension for the Cantor sets that were studied previouslygrows faster than linearly with the energy level. It does not
However, on top of the power-law increase, we see a charefer to a property of theupportof those energies that ob-
acteristic periodic pattern that rather reflects a discrete 56|f\7ious|y requires a fractal dimension smaller than or equal to
similarity, which is a characteristic of the iterated map in theynity.
same way as other characteristic exponents. Following the The specific heat has been computed from 4. using
spirit of the analysis presented in R¢7], we can Fourier  1¢f jterations. Figure 5 shows the obtained results, in a semi-
decompose [IN(E)E™"] as a function of In) and obtain log scale. We do observe that for low temperatu@gT)
oscillates around a mean value that precisely corresponds to
the fractal dimension determined previously, as in the stan-
dard case of the Cantor sets, which were studied in the past
(10) [6,7]. We reproduce here the basic argument leading to this
result.
where w is the fundamental frequency of tiiepgarithmio From the approximate form of the integrated density of
density of states, and, is the complex Fourier amplitude, states Eq(11), we can compute different moments of the
with A_,=A,. Retaining only the lowest frequency part of energy, using the Boltzmann measure associated with a tem-
the decomposition, we arrive at the following approximationperatureT, or their natural rescaling with the temperatare

IN[N(E)]=D In(E) + 2_ A, exp{2i mw In(E)},

for the density of states defined as
N(E)~AEP+BEP 2704 BEP~2i7e, (11) (EMg
Z,= ?:f N(E)[(E/T)"—n(E/T)" e ®¥TdE/T.
whereA=e"0 is a real andB=e"0A, is a complex ampli-

tude. The above formula relies on the fact that the oscillating (12

amplitude is small|B|/A<1, so that the higher harmonics
can be neglected. We note that the fact tNais a nonde- From the latter moments, the specific heat is simply written
creasing function imposeB|/A<1 for any energy spec-

trum. Thus our approximation is believed to be of wide ap- 0.7
plicability. Moreover, agB|/A increases, the quality of the 06 |
approximation will become worse, but no dramatic change of
behavior will take place. We thus see that the log oscillations
are due to the presence of two complex conjugated “fractal
dimensions”D =+ 2i mw and a real on® having an identical
real part. We have plotted on Fig. 3 as a dotted line such an

0.5

os LALA DA AN A
AR RTATA

C(T)

approximation. We see that it captures the main trends of the 02t

data. For the logistic map, we estimaiz~0.38 and w o1t

~0.54. The amplitude of the oscillation is observed to be k
small, A~0.89 and|B|/A~0.02. 0 s 4 2 o 2

A similar behavior can be observed on the circle map, as
shown in Fig. 4. The corresponding parameters are estimated
to beD=1.89, w~2.0, A~1.18 and B|/A=0.026. The fact FIG. 5. Semilog plot of the specific heat computed from the
that the “fractal dimension”D is larger than ondi.e., the logistic map energy spectrum. The dotted line corresponds to a
space dimensignis not to be considered as an offending value equal td as determined from the integrated density of states.

log,o(T)
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FIG. 6. Semilog plot of the specific heat computed from the FIG. 7. Direct evaluation of the specific heat from the fitted
circle map energy spectrum. The plain curve corresponds fo 10density of states for the logistic map case. The result compares
points while the dotted one is computed fronP1We see that a nicely to the direct calculation shown in Fig. 5.
plateau develops at the value of the fractal dimenfienl.9, but

no oscillations are visible. low temperatures, and that this value is equal to the previ-
ously determined fractal dimension obtained from the den-

Z, 2 2 sity of stategsee Fig. 4 but no oscillations can be detected.
C(T)=(Z—O) - (Z_o> (13 The absence of oscillation is a puzzling fact, and in order

to elucidate this question, we computed directly the specific
Using a power-law form foN(T), i.e. neglectingd in Eq.  heat not for the obtained energy levels, but from the fit to the
(11), we obtain density of state§Eq. (11)], which could be extrapolated
down to very low values of the energy. The same procedure
* T was applied to the logistic map. Figure 7 shows the result
2,=AT® fo XP[x"—nx"" e dx=AT>(D+1)T'(n+D), obtained for the latter case. We observe an excellent agree-
(14) ment with the direct integration, for the oscillating part. The
large bump that is present in the direct computatse®e Fig.
whereI'(...) is theEuler function of second kind. From 5) comes from the end of the spectrum and obviously breaks
the latter expression, we deduc¢T)=D(D+1)—D?=D. the scale invariance symmetry. Our analytical approximation

Incorporating the oscillating part, we have does not reproduce this accident since the harmonic fit is
o ) extended to infinity.
z,=AT[(D+1)I'(n+D)+(B/A)(D+1+2i7w) In contrast, the similar computation performed for the

. e D . circle map and whose results are shown in Fig. 8, we do
XT(D+n+2ime) T 7+ (B/A)(D+1-2imw) recover the expected oscillations around Ehevalue, how-
X' (D+n—2imw)T~27]. (15)  ever, we observe in this case that the amplitude of oscilla-
tions is dramatically smaller than in the logistic map case,
Considering thatB|/A is a small parametgwhat has been 3.5x10 °. This enlightens the reason why we did not ob-
shown to be justified we may expand the above formula serve the oscillations in the direct calculation.
and obtain One way of understanding the very abrupt decay of the

) ) ) amplitude of the oscillatory component is to note that the
B 2imoD(1+2i7mw) '(D+2imw+2)

_ 2iTw
CO=D+ DT 2imw rD+2) | 4e-05 —————
o 3e-05 ]
B 2imrwD(1-2imw) F(D—Ziww+2)_|_72iww 20-05 )
A D—-2imw I'(D+2) ' A 1e-05 + ]
16 ) 0
9 © eos | 1
From this formula, we see that the specific heat has a mean 2605 | \/ \/ \/ \/ |
constant part equal to the fractal dimens@rand on top of
it there is an oscillatory component at frequensywhose -3e05 1
amplitude is directly related to the amplitude of the oscilla- -4e-05_1 08 o6 o4 o2 o

tion in the density of states, with a prefactor that is unique
function of D andw. This result is a simple extension of the
computation presented in Ref]. FIG. 8. Direct evaluation of the specific heat from the fitted

We performed the computation Gf(T) for the circle map  density of states for the circle map case. We have substracted the
case. The result is presented in Fig. 6. We do observe agfean value for clarity. Note that the amplitude of oscillation is of
previously, that the specific heat tends to a constant value fahe order of 3.5 1075,

log, (T
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FIG. 9. Semilog plot of the specific heat of the generalization of  FIG. 10. Log-log plot of the momentsl } of the energy levels
the circle map, obtained by raising the energy level to a pg®ver computed from the origin up to levél. The moment orden ranges
The value ofg is indicated in the caption. We note that for lag8e  from 1/4 (top) to 9/4 (bottom by steps of 1/4. The fact that all
the oscillatory behavior is well pronounced, around a vdlg curves are parallel signals that the spectrum is not multifractal in
and with a frequencw/ 8. However, a3 decreases, the amplitude the vicinity of the origin. This is to be contrasted with the global
of the oscillation is strongly damped, and the domain of scaling isbehavior that is known to be multifractal. Note that the log oscilla-
reduced ag should be divided by3. tions are quite visible.

partition function when expressed as a functiodefIn(T)  gtj|| exist, but have been damped so drastically that we can-

can be written as the convolution of the log density of states,ot getect them within reasonable values of computed energy
n(In(E))=En(E), by the functionB(#) whereB is levels.

B(#)=exd —exp—0)]. a7
IV. MULTIFRACTALITY

The first derivative is thus a convolution of the log density of
density of states b’ (68)=exd—exp( 6)lexp(—6). Thus Finally, up to now we left aside the question of multifrac-
we see that the Boltzmann weight term introduces a smootHality, and its possible impact on the scaling of the specific
ening at the scale of the width &', of order unity. This heat. Multifractality has been introduced in order to describe
convolution will essentially preserve oscillations whosea more general class of fractal object such that various mo-
wavelength is larger than the width &, whereas shorter ments of the density would display independent power-law
oscillation will be very severly attenuated. We recall that thebehaviors. More precisely, if we compute thth order mo-
frequency of the logistic map is of order 0.54, whereas thament of the energy distribution within a fixed “distance”

of the circle map is of order 2.0. This accounts for theAE, from any levelE; in the spectrum, and average over all
smooth behavior observed in the case of the circle map. possible position of;, we expect to measure

In order to prove that this high frequency is the main
reason for the very active reduction of the oscillating ampli-
tude of the specific heat, we considered the following con- M (AE)oxAE™™. (18)
struction. From the usual circle map, we compute the recur-
sive iterates ofp, and we choose to attribute an energy level

E; to the value of théth iterate raised to a powg as shown The set of exponents(n) could equivalently be represented

in Eq. (5). As B is increased from the value 1, we can easily,. , . ; :
understand the impact of this transformation on the shape Ot%y its Legendre transform that is often called the multifractal

the integrated density of states curve. Only th&)rgxis has fcpgr?gtl;r:tf(z) ' sﬁa?lr?gl”e' féac(tr?)l' .;natnhgﬁ!ggﬂuigte.ogb;g sa
to be scaled by3. Thereby the fractal dimension of the den- 9ap ng, "1.€.74N) 1 ine funct '
sity of states is simply rescaled t§, D=D/A. Similarly, 7(n)=— aon+fy, and its multifractal spectrum is reduced to

the frequency is decreased &g 8. Thus, the amplitude of a point («q,fp). For thg two iteration maps considered in this
the oscillation should be large for large, and it should _stud_y, the qorrgspondmg multifractal spectra ha_ve been stud-
decrease strongly as the frequency becomes much smalli§d in details in the pasii3]. Let us note that in general,
than unity. these multifractal spectra are inhomogeneous in space.

To test this prediction, we computed the specific heat of FOr our application, the energy levels are not all equiva-
the modified density of states for the circle map, for varioudent. The fundamental level set to zero for our purpose is a
values ofp. The results are shown in Fig. 9. We do observereference point from which the first and second moments
as expected that for large, the specific heat displays large (with a Boltzmann weightare taken into account in the spe-
oscillations, but the latter are reduced significantly forcific heat. In order to check the influence of selecting one
smaller values. We thus conclude that although we did nospecial point, we computed the scaling of various moments
observe the oscillation for the circle map cage=(1), they  of the energy levels from the following definition
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2.5 - , ; i strange attractor. Another possible interpretation is that we
consider here that the energy levels have no width. As the
2r ‘ 1 map at the onset of chaos is not periodic, the system cannot
e revisit twice the same level. Thus, we have at most one en-
~ LS r /’ ] ergy level at a given point. If no broadening of the energy
® e levels to a finite interval is considered, all moments will
by ’/ ] essentially probe the fractal dimension of the support of the
05 /,/ | energy spectrum. As a natural consequence, all moments can
| yd simply be related to the self-similar structure of the attractor
0 i , , , close to the origin, and thus only to the property captured in
0 0.5 1 15 2 2.5 the cumulative density of states.
n
FIG. 11. The symbols show the exponenta) of the scaling of V. CONCLUSION

the momentdV,, with E, plotted versus the moment order The
dotted line ist=n that fits the data very well, thus showing that the
scaling of the energy levels close to the origin is monofractal.

We have considered in this study the specific heat associ-
ated with two examples of multifractal energy level distribu-
tion obtained from iterated map$ogistic and circle. We
E—E also studied other maps such as the periodic fd&h and

E £ although we did not report the results in this article, we ob-

0 tained results that were quite comparable to the logistic map.

M, (E)= E_— (19 We have shown that the basic properties that were first en-
E-E lightened in the Refd:6,7] in the case of Cantor sets, were
E 1 also shown to be valid. This concerns the low temperature
E'=0 behavior of the specific heat that oscillates around a value

equal to the fractal dimension of the energy levels close to
the fundamental. The amplitude of the oscillations was
shown to decrease in a drastic fashion as the frequency of the
log oscillation of the density of states becomes larger than
unity. This may even prevent their practical observation, as
b- is the case for the circle map. Finally, we have shown that
serve that all moments are essentially parallel to each othéEe reason of the v_vide applicability of the Cantor s_et result is
(at least in the range af values considered, i.e., 0.2% t_at,_ alb_elt the er_1t|re attractor is known to be multifratal, the
<2.25. A more direct evaluation of the scaling exponentsd'Stnbu'[Ion OfP‘?'”t? close to the fundamgntal level fOHO\.NS a
#(n) shown in Fig. 11 obtained by a linear regressionmonOfraCtal ditribution, and thus the sg:almg.o?c the density of
through the data shows that states clq_se to the fundamental level is sufficient to compute
the specific heat.

Note that we introduced a normalizing factémoment of
order zerg which is precisely the integrated density of states.
Hence, we haveMy(E)=1 for all energies and thus(0)

=0 In order to check for the multifractal distribution, we
plotted the moment#, raised to the power t/as a func-
tion of E, as shown in Fig. 10. Surprisingly enough we o

7(n)=n. (20
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