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Specific heat of multifractal energy spectra
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Motivated by the self-similar character of energy spectra demonstrated for quasicrystals, we investigate the
case of multifractal energy spectra, and compute the specific heat associated with simple archetypal forms of
multifractal sets as generated by iterated maps. We considered the logistic map and the circle map at their
threshold to chaos. Both examples show nontrivial structures associated with the scaling properties of their
respective chaotic attractors. The specific heat displays generically log-periodic oscillations around a value that
characterizes a single exponent, the ‘‘fractal dimension,’’ of the distribution of energy levels close to the
minimum value set to 0. It is shown that when the fractal dimension and the frequency of log oscillations of
the density of states are large, the amplitude of the resulting log oscillation in the specific heat becomes much
smaller than the log-periodic oscillation measured on the density of states.
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I. INTRODUCTION

In recent years there has been an increasing intere
quasicrystals. These peculiar structures have been studie
tensively both experimentally@1# and theoretically@2#. Sev-
eral reviews on the subject are available@3#. One fascinating
observation concerns the scaling property of some phys
properties observed on those systems. In particular, ex
tions or quasiparticle states exhibit self-similar spectra@4#. In
order to better understand the thermodynamics of such
jects, model cases have been studied@5–8#. In particular in
Refs. @6–8# the specific heatC(T) has been computed fo
fractally distributed energy spectra. The present contribu
follows similar lines, through the investigation of more ge
eral energy spectra, namely, multifractal ones@9#. For this
purpose, we consider a few strange attractors of itera
maps at the onset of chaos that have been studied in det
the past and map the attractor on the energy levelsen , n
51,2, . . . .

The main conclusion of the initial studies on the spec
heat is that it saturates for low temperature at a value
corresponds to the fractal dimension of the fractal supp
Moreover, this saturation is ‘‘decorated’’ by oscillations
ln(T). Thus the period of these oscillations decreases aT
vanishes. The origin of these oscillations was identified to
due to an intrinsically discrete self-similarity of the dete
ministic fractal considered as in a number of other examp

*Email address: luciano@dfte.ufrn.br
†Email address: vallejos@cbpf.br
‡Email address: tsallis@cbpf.br
§Email address: rsmendes@dfi.uem.br
i Email address: stephane.roux@saint-gobain.com
063-651X/2001/64~1!/011104~7!/$20.00 64 0111
in
ex-

al
a-

b-

n
-

d
l in

at
t.

e

s

studied in Ref.@10#. The same oscillations could be direct
identified as the longest wavelength oscillations on the in
grated density of states when it is expressed in terms of
logarithm of the energy. We will see that most of the co
clusions reached on the Cantor sets are still applicable to
more complicated class of energy spectra. Let us also n
that such oscillating specific heat has been obtained in
aperiodic Ising model@11#. Moreover, recently Curado an
Rego-Monteiro@12# derived similar multifractal spectra suc
as the ones we will study below directly from a Hamiltonia
and not as postulated spectrum as we do here.

In the present study, after defining our identification of t
energy spectrum, we present the result of direct numer
simulations, concerning the cumulative density of states
the specific heat. We give a closed form expression for
amplitude of the log oscillations that are expected in
specific heat, and we show that when the frequency is h
~typically larger than unity in the natural scale of the pro
lem! the amplitude of the oscillations is rapidly decaying d
to intrinsic filtering that can be related to the form of th
Boltzmann weight. Finally, we discuss the relevance of m
tifractality in the present problem.

II. ENERGY SPECTRA

We considered two iterated maps at the onset of cha
the logistic and the circle maps. They follow a similar stru
ture, namely, one computes the values of the sequence

xn115f~xn ;A! ~1!

for a control parameterA. For low enough values ofA, the
set of pointsxn ends on a periodic orbit. At a critical value o
A5Ac , the attractor ofxn becomes a fractal object, and th
©2001 The American Physical Society04-1
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distribution ofx on this set becomes multifractal. PastAc the
iteration can be chaotic. These features are quite genera
can be encountered in many examples, and they illust
one of the possible scenarios of the transition to chaos.
specialize our discussion in the following on two such ma

The iterated values ofxn are then identified with energ
levelsEn after a translation and dilation so thatEn fit into the
interval @0:1#

En[
xn2min$xi%

max$xi%2min$xi%
. ~2!

In the cases of interest for us in the following, the compu
tion of the ground state energy, min$xi%, is straightforward.
The latter plays a central role in the analysis, since by cha
ing the temperature, we will analyze the scale invariant
ture of the energy spectrum with respect to a dilation fr
the ground state value.

Let us now define the maps used hereafter.

A. Logistic map

The most classical example is the logistic map@13# de-
fined as

f log~x!512Ax2. ~3!

The critical value ofA is Ac51.401 155 198 . . . . Theden-
sity of states is shown in Fig. 1.

B. Circle map

The second case is the circle map@13#, defined by the
following iteration function

fcir~x!5A1S x2
sin~2px!

2p D ~mod 1! ~4!

where the critical value ofA is Ac50.606 661 063 469 . . . .
The density of states can be seen in Fig. 2. We observe
the support of the energy level is much denser than in
previous case, in agreement with the observation that
fractal dimension of the support is unity.

FIG. 1. Plot of the density of statesn(E) for the logistic map at
the onset of chaos.
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For reasons discussed latter, we also consider as a va
in this case the energy levelEn as given by a power law o
the iteratedxn ,

En5xn
b , ~5!

whereb is an arbitrary parameter.~Note that in this last case
the minimum and maximum values ofx are 0 and 1, respec
tively.!

III. NUMERICAL RESULTS

Once a large number of energy levels have been ge
ated~typically 106), the partition functionZ(T) is computed
as a function of temperature, using the standard Boltzm
measure

Z~T!5(
n

e2En /kT, ~6!

where the Boltzmann constantk is set to unity, thereby de
fining our temperature scale. We also computed the in
grated density of states

N~E!5(
n

H~En2E!, ~7!

whereH is the Heaviside function~equal to 1 for positive
arguments and 0 for negative ones!. Finally, we computed
the specific heat as

C~T!5S 1

T2D F(
n

En
2e2En /kT

Z~T!
2S (

n
Ene2En /kT

Z~T!
D 2G

~8!

Figure 3 shows the log-log plot of the cumulative density
states of the energy levels obtained from the logistic m
The dotted line drawn in the same figure indicates that
large scale trend of the density of states is to grow as a po
law of the energy,

N~E!}ED, ~9!

FIG. 2. Plot of the density of statesn(E) for the circle map at
the onset of chaos.
4-2
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with an exponent that can be compared with the fractal
mension for the Cantor sets that were studied previou
However, on top of the power-law increase, we see a c
acteristic periodic pattern that rather reflects a discrete s
similarity, which is a characteristic of the iterated map in t
same way as other characteristic exponents. Following
spirit of the analysis presented in Ref.@7#, we can Fourier
decompose ln@N(E)E2D# as a function of ln(E) and obtain

ln@N~E!#5D ln~E!1 (
n52`

`

An exp$2ipnv ln~E!%,

~10!

wherev is the fundamental frequency of the~logarithmic!
density of states, andAn is the complex Fourier amplitude
with A2n5An. Retaining only the lowest frequency part
the decomposition, we arrive at the following approximati
for the density of states

N~E!'AED1BED12ipv1B̄ED22ipv, ~11!

whereA5eA0 is a real andB5eA0A1 is a complex ampli-
tude. The above formula relies on the fact that the oscillat
amplitude is small,uBu/A!1, so that the higher harmonic
can be neglected. We note that the fact thatN is a nonde-
creasing function imposesuBu/A,1 for any energy spec
trum. Thus our approximation is believed to be of wide a
plicability. Moreover, asuBu/A increases, the quality of th
approximation will become worse, but no dramatic change
behavior will take place. We thus see that the log oscillatio
are due to the presence of two complex conjugated ‘‘fra
dimensions’’D62ipv and a real oneD having an identical
real part. We have plotted on Fig. 3 as a dotted line such
approximation. We see that it captures the main trends of
data. For the logistic map, we estimateD'0.38 andv
'0.54. The amplitude of the oscillation is observed to
small,A'0.89 anduBu/A'0.02.

A similar behavior can be observed on the circle map
shown in Fig. 4. The corresponding parameters are estim
to beD51.89,v'2.0, A'1.18 anduBu/A50.026. The fact
that the ‘‘fractal dimension’’D is larger than one~i.e., the
space dimension! is not to be considered as an offendin

FIG. 3. Log-log plot of the integrated density of statesN(E) for
the logistic map at the onset of chaos. The dotted curve show
best fit to the data using a single log oscillation.
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value, it simply means that the number of energy lev
grows faster than linearly with the energy level. It does n
refer to a property of thesupportof those energies that ob
viously requires a fractal dimension smaller than or equa
unity.

The specific heat has been computed from Eq.~8!, using
106 iterations. Figure 5 shows the obtained results, in a se
log scale. We do observe that for low temperatures,C(T)
oscillates around a mean value that precisely correspond
the fractal dimension determined previously, as in the st
dard case of the Cantor sets, which were studied in the
@6,7#. We reproduce here the basic argument leading to
result.

From the approximate form of the integrated density
states Eq.~11!, we can compute different moments of th
energy, using the Boltzmann measure associated with a
peratureT, or their natural rescaling with the temperaturezn
defined as

zn[
^En&B

Tn 5E N~E!@~E/T!n2n~E/T!n21#e2E/TdE/T.

~12!

From the latter moments, the specific heat is simply writt

a
FIG. 4. Log-log plot of the integrated density of statesN(E) for

the circle map at the onset of chaos. The dotted curve shows a
fit to the data using a single log oscillation.

FIG. 5. Semilog plot of the specific heat computed from t
logistic map energy spectrum. The dotted line corresponds t
value equal toD as determined from the integrated density of stat
4-3
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C~T!5S z2

z0
D2S z1

z0
D 2

. ~13!

Using a power-law form forN(T), i.e. neglectingB in Eq.
~11!, we obtain

zn5ATDE
0

`

xD@xn2nxn21#e2xdx5ATD~D11!G~n1D !,

~14!

whereG( . . . ) is theEuler function of second kind. From
the latter expression, we deduceC(T)5D(D11)2D25D.
Incorporating the oscillating part, we have

zn5ATD@~D11!G~n1D !1~B/A!~D1112ipv!

3G~D1n12ipv!T2ipv1~B̄/A!~D1122ipv!

3G~D1n22ipv!T22ipv#. ~15!

Considering thatuBu/A is a small parameter~what has been
shown to be justified!, we may expand the above formu
and obtain

C~T!5D1
B

A

2ipvD~112ipv!

D12ipv

G~D12ipv12!

G~D12!
T2ipv

2
B̄

A

2ipvD~122ipv!

D22ipv

G~D22ipv12!

G~D12!
T22ipv.

~16!

From this formula, we see that the specific heat has a m
constant part equal to the fractal dimensionD and on top of
it there is an oscillatory component at frequencyv whose
amplitude is directly related to the amplitude of the oscil
tion in the density of states, with a prefactor that is uniq
function ofD andv. This result is a simple extension of th
computation presented in Ref.@7#.

We performed the computation ofC(T) for the circle map
case. The result is presented in Fig. 6. We do observe
previously, that the specific heat tends to a constant value

FIG. 6. Semilog plot of the specific heat computed from t
circle map energy spectrum. The plain curve corresponds to6

points while the dotted one is computed from 105. We see that a
plateau develops at the value of the fractal dimensionD'1.9, but
no oscillations are visible.
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low temperatures, and that this value is equal to the pre
ously determined fractal dimension obtained from the d
sity of states~see Fig. 4! but no oscillations can be detecte

The absence of oscillation is a puzzling fact, and in ord
to elucidate this question, we computed directly the spec
heat not for the obtained energy levels, but from the fit to
density of states@Eq. ~11!#, which could be extrapolated
down to very low values of the energy. The same proced
was applied to the logistic map. Figure 7 shows the res
obtained for the latter case. We observe an excellent ag
ment with the direct integration, for the oscillating part. T
large bump that is present in the direct computation~see Fig.
5! comes from the end of the spectrum and obviously bre
the scale invariance symmetry. Our analytical approximat
does not reproduce this accident since the harmonic fi
extended to infinity.

In contrast, the similar computation performed for t
circle map and whose results are shown in Fig. 8, we
recover the expected oscillations around theD value, how-
ever, we observe in this case that the amplitude of osc
tions is dramatically smaller than in the logistic map ca
3.531025. This enlightens the reason why we did not o
serve the oscillations in the direct calculation.

One way of understanding the very abrupt decay of
amplitude of the oscillatory component is to note that t

0
FIG. 7. Direct evaluation of the specific heat from the fitt

density of states for the logistic map case. The result comp
nicely to the direct calculation shown in Fig. 5.

FIG. 8. Direct evaluation of the specific heat from the fitt
density of states for the circle map case. We have substracted
mean value for clarity. Note that the amplitude of oscillation is
the order of 3.531025.
4-4
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SPECIFIC HEAT OF MULTIFRACTAL ENERGY SPECTRA PHYSICAL REVIEW E64 011104
partition function when expressed as a function ofu[ ln(T)
can be written as the convolution of the log density of sta
n„ln(E)…[En(E), by the functionB(u) whereB is

B~u!5exp@2exp~2u!#. ~17!

The first derivative is thus a convolution of the log density
density of states byB8(u)5exp@2exp(2u)#exp(2u). Thus
we see that the Boltzmann weight term introduces a smo
ening at the scale of the width ofB8, of order unity. This
convolution will essentially preserve oscillations who
wavelength is larger than the width ofB8, whereas shorte
oscillation will be very severly attenuated. We recall that t
frequency of the logistic map is of order 0.54, whereas t
of the circle map is of order 2.0. This accounts for t
smooth behavior observed in the case of the circle map.

In order to prove that this high frequency is the ma
reason for the very active reduction of the oscillating amp
tude of the specific heat, we considered the following c
struction. From the usual circle map, we compute the rec
sive iterates off, and we choose to attribute an energy lev
Ei to the value of thei th iterate raised to a powerb as shown
in Eq. ~5!. As b is increased from the value 1, we can eas
understand the impact of this transformation on the shap
the integrated density of states curve. Only the ln(E) axis has
to be scaled byb. Thereby the fractal dimension of the de
sity of states is simply rescaled byb, D5D/b. Similarly,
the frequency is decreased tov/b. Thus, the amplitude o
the oscillation should be large for largeb, and it should
decrease strongly as the frequency becomes much sm
than unity.

To test this prediction, we computed the specific hea
the modified density of states for the circle map, for vario
values ofb. The results are shown in Fig. 9. We do obser
as expected that for largeb, the specific heat displays larg
oscillations, but the latter are reduced significantly
smaller values. We thus conclude that although we did
observe the oscillation for the circle map case (b51), they

FIG. 9. Semilog plot of the specific heat of the generalization
the circle map, obtained by raising the energy level to a poweb.
The value ofb is indicated in the caption. We note that for largeb,
the oscillatory behavior is well pronounced, around a valueD/b
and with a frequencyv/b. However, asb decreases, the amplitud
of the oscillation is strongly damped, and the domain of scaling
reduced asT should be divided byb.
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still exist, but have been damped so drastically that we c
not detect them within reasonable values of computed ene
levels.

IV. MULTIFRACTALITY

Finally, up to now we left aside the question of multifra
tality, and its possible impact on the scaling of the spec
heat. Multifractality has been introduced in order to descr
a more general class of fractal object such that various
ments of the density would display independent power-l
behaviors. More precisely, if we compute thenth order mo-
ment of the energy distribution within a fixed ‘‘distance
DE, from any levelEi in the spectrum, and average over a
possible position ofEi , we expect to measure

Mn~DE!}DEt(n). ~18!

The set of exponentst(n) could equivalently be represente
by its Legendre transform that is often called the multifrac
spectrumf (a). A single fractal, in this language obeys
‘‘constant gap scaling,’’ i.e.,t(n) is an affine function ofn,
t(n)52a0n1 f 0, and its multifractal spectrum is reduced
a point (a0 , f 0). For the two iteration maps considered in th
study, the corresponding multifractal spectra have been s
ied in details in the past@13#. Let us note that in genera
these multifractal spectra are inhomogeneous in space.

For our application, the energy levels are not all equiv
lent. The fundamental level set to zero for our purpose i
reference point from which the first and second mome
~with a Boltzmann weight! are taken into account in the spe
cific heat. In order to check the influence of selecting o
special point, we computed the scaling of various mome
of the energy levels from the following definition

FIG. 10. Log-log plot of the momentsMn
1/n of the energy levels

computed from the origin up to levelE. The moment ordern ranges
from 1/4 ~top! to 9/4 ~bottom! by steps of 1/4. The fact that al
curves are parallel signals that the spectrum is not multifracta
the vicinity of the origin. This is to be contrasted with the glob
behavior that is known to be multifractal. Note that the log oscil
tions are quite visible.

f

s
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Mn~E!5

(
E850

E85E

E8n

(
E850

E85E

1

. ~19!

Note that we introduced a normalizing factor,~moment of
order zero! which is precisely the integrated density of stat
Hence, we haveM0(E)51 for all energies and thust(0)
50 In order to check for the multifractal distribution, w
plotted the momentsMn raised to the power 1/n as a func-
tion of E, as shown in Fig. 10. Surprisingly enough we o
serve that all moments are essentially parallel to each o
~at least in the range ofn values considered, i.e., 0.25<n
<2.25. A more direct evaluation of the scaling expone
t(n) shown in Fig. 11 obtained by a linear regressi
through the data shows that

t~n!5n. ~20!

Therefore, we conclude that for moments considered w
respect to the fundamental level, there is no sign of mu
fractality. This result, in apparent contradiction with the cla
sical results published for this problem simply underlines
special role played by the lowest point. In the case of itera
maps, it appears that multifractality might be associated w
a fractal dimension that may vary from point to point in t

FIG. 11. The symbols show the exponentst(n) of the scaling of
the momentsMn with E, plotted versus the moment ordern. The
dotted line ist5n that fits the data very well, thus showing that th
scaling of the energy levels close to the origin is monofractal.
y
t,
.

v.
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strange attractor. Another possible interpretation is that
consider here that the energy levels have no width. As
map at the onset of chaos is not periodic, the system ca
revisit twice the same level. Thus, we have at most one
ergy level at a given point. If no broadening of the ener
levels to a finite interval is considered, all moments w
essentially probe the fractal dimension of the support of
energy spectrum. As a natural consequence, all moments
simply be related to the self-similar structure of the attrac
close to the origin, and thus only to the property captured
the cumulative density of states.

V. CONCLUSION

We have considered in this study the specific heat ass
ated with two examples of multifractal energy level distrib
tion obtained from iterated maps~logistic and circle!. We
also studied other maps such as the periodic map@13#, and
although we did not report the results in this article, we o
tained results that were quite comparable to the logistic m
We have shown that the basic properties that were first
lightened in the Refs.@6,7# in the case of Cantor sets, wer
also shown to be valid. This concerns the low temperat
behavior of the specific heat that oscillates around a va
equal to the fractal dimension of the energy levels close
the fundamental. The amplitude of the oscillations w
shown to decrease in a drastic fashion as the frequency o
log oscillation of the density of states becomes larger th
unity. This may even prevent their practical observation,
is the case for the circle map. Finally, we have shown t
the reason of the wide applicability of the Cantor set resul
that, albeit the entire attractor is known to be multifratal, t
distribution of points close to the fundamental level follows
monofractal ditribution, and thus the scaling of the density
states close to the fundamental level is sufficient to comp
the specific heat.
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